Skip to main content

Information technology

Information technology


Information technology (IT) is the use of computers to store, retrieve, transmit, and manipulate data, or information, often in the context of a business or other enterprise.IT is considered to be a subset of information and communications technology (ICT).Humans have been storing, retrieving, manipulating, and communicating information since the Sumerians in Mesopotamia developed writing in about 3000 BC, but the term information technology in its modern sense first appeared in a 1958 article published in the Harvard Business Review; authors Harold J. Leavitt and Thomas L. Whistler commented that "the new technology does not yet have a single established name. We shall call it information technology (IT)." Their definition consists of three categories: techniques for processing, the application of statistical and mathematical methods to decision-making, and the simulation of higher-order thinking through computer programs.
The term is commonly used as a synonym for computers and computer networks, but it also encompasses other information distribution technologies such as television and telephones. Several products or services within an economy are associated with information technology, including computer hardware, software, electronics, semiconductors, internet, telecom equipment, and e-commerce.
Based on the storage and processing technologies employed, it is possible to distinguish four distinct phases of IT development: pre-mechanical (3000 BC – 1450 AD), mechanical (1450–1840), electromechanical (1840–1940), and electronic (1940–present). This article focuses on the most recent period (electronic), which began in about 1940.

Computer technology History
Devices have been used to aid computation for thousands of years, probably initially in the form of a tally stick.The Antikythera mechanism, dating from about the beginning of the first century BC, is generally considered to be the earliest known mechanical analog computer, and the earliest known geared mechanism.Comparable geared devices did not emerge in Europe until the 16th century, and it was not until 1645 that the first mechanical calculator capable of performing the four basic arithmetical operations was developed. Electronic computers, using either relays or valves, began to appear in the early 1940s. The electromechanical Zuse Z3, completed in 1941, was the world's first programmable computer, and by modern standards one of the first machines that could be considered a complete computing machine. Colossus, developed during the Second World War to decrypt German messages, was the first electronic digital computer. Although it was programmable, it was not general-purpose, being designed to perform only a single task. It also lacked the ability to store its program in memory; programming was carried out using plugs and switches to alter the internal wiring. The first recognisably modern electronic digital stored-program computer was the Manchester Small-Scale Experimental Machine (SSEM), which ran its first program on 21 June 1948.
The development of transistors in the late 1940s at Bell Laboratories allowed a new generation of computers to be designed with greatly reduced power consumption. The first commercially available stored-program computer, the Ferranti Mark I, contained 4050 valves and had a power consumption of 25 kilowatts. By comparison the first transistorised computer, developed at the University of Manchester and operational by November 1953, consumed only 150 watts in its final version.
Information Technology

Electronic data processing
Data storage
Early electronic computers such as Colossus made use of punched tape, a long strip of paper on which data was represented by a series of holes, a technology now obsolete. Electronic data storage, which is used in modern computers, dates from World War II, when a form of delay line memory was developed to remove the clutter from radar signals, the first practical application of which was the mercury delay line. The first random-access digital storage device was the Williams tube, based on a standard cathode ray tube, but the information stored in it and delay line memory was volatile in that it had to be continuously refreshed, and thus was lost once power was removed. The earliest form of non-volatile computer storage was the magnetic drum, invented in 1932 and used in the Ferranti Mark 1, the world's first commercially available general-purpose electronic computer.
IBM introduced the first hard disk drive in 1956, as a component of their 305 RAMAC computer system. Most digital data today is still stored magnetically on hard disks, or optically on media such as CD-ROMs. Until 2002 most information was stored on analog devices, but that year digital storage capacity exceeded analog for the first time. As of 2007 almost 94% of the data stored worldwide was held digitally: 52% on hard disks, 28% on optical devices and 11% on digital magnetic tape. It has been estimated that the worldwide capacity to store information on electronic devices grew from less than 3 exabytes in 1986 to 295 exabytes in 2007, doubling roughly every 3 years.
Information technology

Databases
Database management systems emerged in the 1960s to address the problem of storing and retrieving large amounts of data accurately and quickly. One of the earliest such systems was IBM's Information Management System (IMS), which is still widely deployed more than 50 years later. IMS stores data hierarchically, but in the 1970s Ted Codd proposed an alternative relational storage model based on set theory and predicate logic and the familiar concepts of tables, rows and columns. The first commercially available relational database management system (RDBMS) was available from Oracle in 1980.
Information Technology

Retrieval Data
The terms "data" and "information" are not synonymous. Anything stored is data, but it only becomes information when it is organized and presented meaningfully. Most of the world's digital data is unstructured, and stored in a variety of different physical formats even within a single organization. Data warehouses began to be developed in the 1980s to integrate these disparate stores. They typically contain data extracted from various sources, including external sources such as the Internet, organized in such a way as to facilitate decision support systems (DSS).
Information technology

Transmission Data
Data transmission has three aspects: transmission, propagation, and reception. It can be broadly categorized as broadcasting, in which information is transmitted unidirectional downstream, or telecommunications, with bidirectional upstream and downstream channels. XML has been increasingly employed as a means of data interchange since the early 2000s, particularly for machine-oriented interactions such as those involved in web-oriented protocols such as SOAP,[27] describing "data-in-transit rather than ... data-at-rest". One of the challenges of such usage is converting data from relational databases into XML Document Object Model (DOM) structures.
information technology

Manipulation Data
Hilbert and Lopez identify the exponential pace of technological change (a kind of Moore's law): machines' application-specific capacity to compute information per capita roughly doubled every 14 months between 1986 and 2007; the per capita capacity of the world's general-purpose computers doubled every 18 months during the same two decades; the global telecommunication capacity per capita doubled every 34 months; the world's storage capacity per capita required roughly 40 months to double (every 3 years); and per capita broadcast information has doubled every 12.3 years.
Massive amounts of data are stored worldwide every day, but unless it can be analyzed and presented effectively it essentially resides in what have been called data tombs: "data archives that are seldom visited”. To address that issue, the field of data mining – "the process of discovering interesting patterns and knowledge from large amounts of data" emerged in the late 1980s.
Information technology

IT software and hardware
IT includes several layers of physical equipment (hardware), virtualization and management or automation tools, operating systems and applications (software) used to perform essential functions. User devices, peripherals and software, such as laptops, smartphones or even recording equipment, can be included in the IT domain. IT can also refer to the architectures, methodologies and regulations governing the use and storage of data.
Business applications include databases like SQL Server, transactional systems such as real-time order entry, email servers like Exchange, Web servers like Apache, customer relationship management and enterprise resource planning systems. These applications execute programmed instructions to manipulate, consolidate, disperse or otherwise affect data for a business purpose.
Computer servers run business applications. Servers interact with client users and other servers across one or more business networks. Storage is any kind of technology that holds information as data. Information can take any form including file data, multimedia, telephony data and Web data, data from sensors or future formats. Storage includes volatile random access memory (RAM) as well as non-volatile tape, hard disk and solid-state flash drives.
IT architectures have evolved to include virtualization and cloud computing, where physical resources are abstracted and pooled in different configurations to meet application requirements. Clouds may be distributed across locations and shared with other IT users, or contained within a corporate data center, or some combination of both deployments.
Information technology

In a business context, the Information Technology Association of America has defined information technology as "the study, design, development, application, implementation, support or management of computer-based information systems". The responsibilities of those working in the field include network administration, software development and installation, and the planning and management of an organization's technology life cycle, by which hardware and software are maintained, upgraded and replaced.
Academic perspective
In an academic context, the Association for Computing Machinery defines IT as "undergraduate degree programs that prepare students to meet the computer technology needs of business, government, healthcare, schools, and other kinds of organizations .... IT specialists assume responsibility for selecting hardware and software products appropriate for an organization, integrating those products with organizational needs and infrastructure, and installing, customizing, and maintaining those applications for the organization’s computer users.

Commercial and employment perspective
Companies in the information technology field are often discussed as a group as the "tech sector" or the "tech industry".In a business context, the Information Technology Association of America has defined information technology as "the study, design, development, application, implementation, support or management of computer-based information systems". The responsibilities of those working in the field include network administration, software development and installation, and the planning and management of an organization's technology life cycle, by which hardware and software are maintained, upgraded and replaced.
Information technology

Perspectives
Academic Perspective
In an academic context, the Association for Computing Machinery defines IT as "undergraduate degree programs that prepare students to meet the computer technology needs of business, government, healthcare, schools, and other kinds of organizations .... IT specialists assume responsibility for selecting hardware and software products appropriate for an organization, integrating those products with organizational needs and infrastructure, and installing, customizing, and maintaining those applications for the organization’s computer users."

Commercial and employment perspective
In a business context, the Information Technology Association of America has defined information technology as "the study, design, development, application, implementation, support or management of computer-based information systems". The responsibilities of those working in the field include network administration, software development and installation, and the planning and management of an organization's technology life cycle, by which hardware and software are maintained, upgraded and replaced.
Information technology

Comments

Popular posts from this blog

Difference between bandwidth and latency

Difference between bandwidth and latency Difference between bandwidth and latency is something that confuses a lot of people, but if you are an IT person it would be useful to know the difference between the two because sooner or later you will face a network problem related to it. Part of the confusion has been created by Internet providers by always recommending increase of bandwidth to Internet speed related problem, but as we will see, an Internet connection speed is not always dictated by bandwidth. This part is very important. What is difference between bandwidth and latency? I will give you an analogy to make it easier to understand it if you are still confused. Imagine a highway with 4 lanes where the speed limit is 70 mph. Now on the Internet, bandwidth is the highway, and latency is the 70 mph speed limit. Now if you want to increase the amount of cars that travels through the highway you can add more lanes, but because the highway has too many curves, and

10 things that android phones can do, apple iPhone can`t do

10 things that android phones can do, apple iPhone can`t do Android and iOS both operating systems offer a lot of features (most of them commonly found in both), there are always a few that are exclusively available on that OS. Here are 10 such features available on Android, but missing from iPhones' operating system. Instant app: test apps before downloading This feature allows users to test the apps before they decide to download. Compatible with all Android devices operating on Jelly Bean or higher, this feature is still missing for iPhones. Set DATA Limit alerts  In the settings option of your Android smartphone, users have the choice to set data limit with a mode called the Data Saving Mode. This allows users to limit the background data consumption in case there is a dearth of available data. And you cannot set limit in iPhone.  Records phone apps  Thanks to the customized UIs of the various Android smartphones, the option to record a call is prese

What is DNS?

What is DNS? The Domain Name System (aka DNS) is used to resolve human-readable hostnames like www.notesshow.blogspot.in into machine-readable IP addresses like 204.13.248.115. DNS also provides other information about domain names, such as mail services. But why is DNS important? How does it work? What else should you know? History of the DNS When the Internet was still in its infancy when you wanted to visit a website you had to know the IP address of that site. That’s because computers are and were only able to communicate using numbers. It’s long, hard to remember, and we (humans, I presume) are not robots. We needed a way to translate computer-readable information into human-readable. And it had to be fast, lightweight. DNS In the early 1980’s, Paul Mockapetris came up with a system that automatically mapped IP addresses to domain names. And the DNS was born. This same system still serves as the backbone of the modern Internet, today. And yet, only a small subs